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Introduction

This paper introduces a comprehensive method for addressing cell outages in mobile networks with near-
immediate compensation. By adjusting neighboring cells in near-real-time, the aim is to maintain network 
coverage and capacity in the face of sudden outages. 

Cell outages significantly impact the Quality of Service (QoS), making it essential for network operators 
to respond quickly. The complexity of mobile networks and the interdependence of cells, due to mutual 
interference, make traditional Coverage and Capacity Optimization (CCO) methods inadequate for real-time 
outage compensation. This underscores the necessity of proactive planning for various outage and traffic 
scenarios, enabling an immediate and optimal response when an outage occurs. 

Achieving this rapid response involves applying reinforcement learning (RL) to a digital twin of the network cell 
cluster. A sophisticated network simulation framework allows for the exploration of a wide range of realistic 
scenarios and to train agents to make optimal decisions under almost any condition. These agents are then 
implemented in the actual network to manage real-time issues. 

As part of our evaluation, we investigated several RL strategies and algorithms, with a focus on the most 
significant ones and their distinctions. This paper explores the use of single-agent (SA) versus multi-agent 
(MA) systems, and the application of Deep Q-Network (DQN) and proximal policy optimization (PPO) 
algorithms. These agents are designed to either adjust a single cell or coordinate actions across multiple cells, 
based on generic or cell-specific observations. 

The effectiveness of these strategies is assessed by analyzing Key Performance Indicators (KPI), such as 
coverage, capacity, and interference reduction. The impact of the agents’ actions on the network is evaluated 
by observing changes in these metrics, particularly through adjustments in electrical tilt (e-tilt) in response to 
simulated cell outage scenarios.

Introduction
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Terminology

Uncontrolled cell outages
These outages are unexpected and occur due 
to various reasons, often related to hardware 
or software issues within the network’s many 
components. Such outages lead to a drop in 
capacity within the affected cluster. In rural 
areas, a single cell outage can cause significant 
network coverage problems, directly affecting QoS. 
Anticipating these outages is challenging, and it is 
difficult to predict their duration with precision.

Controlled cell outages
With advancements in network automation and 
the increased flexibility offered by software-
defined networks, such as the Open RAN (O-RAN) 
architecture illustrated in Figure 1 below, networks 
are evolving into more complex systems. The 
integration of various near-real-time xApps and 
non-real-time rApps from different vendors allows 
for multiple optimization goals to be pursued 
simultaneously. This complexity means networks 
must be agile in responding to and optimizing 
different network functions.

Terminology

Figure 1: O-RAN Architecture Overview
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One such function is the Energy Saving 
Management (ESM), which reduces capacity or 
turns off small cells not in use, particularly during 
low traffic periods like at night. ESM is becoming 
a key tool for network operators to save costs and 
reduce energy waste. 

Planned network maintenance, sometimes 
conducted during peak hours, can also lead to 
controlled outages. These outages can affect 
large clusters and significantly impact network 
performance. 

Cell outage compensation
Compensating for the negative effects of 
uncontrolled cell outages is critical to maintaining 
coverage, capacity, and most importantly, QoS. 
Operators need to ensure a seamless experience for 
their customers, but often they lack the tools for an 
automated and near-real-time response.
Amdocs Cell Outage Compensation (COC) solution 
addresses this need by facilitating network self-
repair through the automatic adjustment of the 
Remote Electrical Tilt (RET) of neighboring cells. 
Such adjustments are instrumental in mitigating 
coverage gaps and enhancing capacity in response 
to uncontrolled cell outages.



5

Amdocs Cell Outage  
Compensation ORAN App

Machine Learning Based Near-Real-Time  
Cell Outage Compensation

Amdocs Cell Outage Compensation  
ORAN App
The Amdocs Cell Outage Compensation xApp was tested within the Accelerating RAN Intelligence in 5G 
(ARI-5G) project, initiated in August 2022 and spanning 18 months. The ARI-5G Consortium is dedicated 
to exploring foundational use cases such as energy efficiency, massive MIMO, coverage and interference 
mitigation. This collaborative effort demonstrates how a united ecosystem can accelerate innovation, 
introduce new Open RAN products to mobile operators, and shorten development cycles.

Led by the Telecom Infra Project (TIP), the ARI-5G Consortium includes key players such as Accelleran, Amdocs, 
AttoCore, BT, and VIAVI Solutions. It’s a significant initiative supported by the UK government’s Department 
for Digital, Culture, Media and Sport (now DIST) to expedite the deployment of Open RAN products in UK  
mobile networks.

The Cell Outage Compensation xApp employs machine learning (ML) to identify the most effective strategies 
for cell outage compensation in near-real-time. It integrates seamlessly into the O-RAN architecture (ref. 1) 
and the ML workflow (ref. 2), reapplying 3GPP Self-Organizing Networks (SON) use cases like Cell Outage 
Detection and Compensation within the O-RAN framework, as discussed by the O-RAN alliance in the 
“Integrated SON Function within the O-RAN framework” use case (ref. 3).

In line with the O-RAN alliance ML workflow architecture (ref. 2), the functionality is divided between ML 
Training and ML Inference Host apps. Consistent with the initial discussion, ML Inference is implemented in the 
O-RAN near-real-time control loop as an xApp.

Both components are packaged in Docker containers and can be connected to commercial or open-source 
non-real-time and/or near-real-time RIC platforms via their open RIC App SDK and/or the R1 interface, 
depending on the ML workflow version being implemented. RAN telemetry data (CM, PM) are accessed 
through the Open RAN standardized O1 interface. ML actions from the ML Inference Host are conveyed 
through the O1 or the O-FH-m interface to the network’s actors.

The initial version created for the ARI-5G project aligns with Scenario 1.4 of the O-RAN alliance AI/ML 
deployment scenarios, featuring both ML Training and ML Inference Host components as an xApp. These 
components are then connected to the project’s near-real-time RIC (see Figure 2). In the ARI-5G project, a 
network simulator serves as a digital twin for ML training and reinforcement learning (see Figure 3).
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Figure 3: ML training supported by a network simulator as a digital network twin

Figure 2: Amdocs Cell Outage Compensation implemented following O-RAN ML deployment Scenario 1.4 (ARI-5G version)
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Figure 4: Amdocs Cell Outage Compensation implemented following O-RAN ML deployment scenario 1.2 (alternative version)

An alternative approach for the Amdocs Cell Outage Compensation implementation might align with 
Scenario 1.2 outlined by the O-RAN alliance AI/ML deployment scenarios. This approach would transition the 
ML training process to the non-real-time control loop, utilizing the A1 interface to deploy the ML model into the 
near-real-time Inference Host xApp (refer to Figure 4). 

Additionally, based on specific network operator requirements, the O-RAN ML deployment Scenario 1.3 could 
be an option. This scenario involves conducting ML training offline and managing the ML model externally 
from the non-real-time RIC, while keeping the ML Inference xApp within the near-real-time control loop.

Amdocs Cell Outage  
Compensation ORAN App
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Figure 5: Reinforcement Learning Model

The training is driven by a reward function adjusted 
in accordance with our optimization goals. This 
function gives feedback to the agent, encouraging 
actions and state changes that align with our 
objectives. The ultimate aim for the agent during 
its training journey is to maximize the sum of these 
rewards over time, focusing on the most effective 
strategies for outage compensation. 

Simulation environment
Creating a close-to-reality digital twin of an actual 
Radio Access Network (RAN) is crucial for our work. 
Our simulation framework is designed to precisely 
mimic the real network’s topology, enabling us 
to cover a wide array of traffic scenarios. This 
includes everything from map-based situations and 
moving hotspots to time-based variations and their 
combinations.

At the core of our RAN simulation is the load-
coupling model (ref 4,5,6,7), which accurately 
reflects the intricate interplay of interference and 
load dependencies among neighboring cells.

For Cell Outage Compensation (COC), our 
simulator is equipped to introduce cell outages 
randomly throughout the network, even simulating 
multiple outages simultaneously. This feature is 
invaluable during the training phase, as it allows the 
agents to adapt to various outage scenarios. Their 
learning focuses on maintaining the highest possible 
QoS despite these challenges.

Machine Learning in Cell 
Outage Compensation
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Machine Learning 
in Cell Outage 
Compensation
Addressing cell outages in near-real-time, 
particularly within a one-second window, 
necessitates a sophisticated approach. ML 
techniques are ideally suited to meet this challenge. 
The key is to train the system in advance using 
simulations that closely mimic real network 
conditions. 

In scenarios like ours, specifically within the realm 
of network optimization, reinforcement learning 
proves to be the most effective method. This 
approach allows the agent to autonomously 
create a model that optimally maps observations 
to actions, relying solely on the rewards received 
– essentially, the network KPIs achieved during 
simulations.

This pre-training phase is efficiently managed 
by dividing it into smaller, manageable network 
clusters. These are then processed independently 
and in parallel, enabling us to scale the learning 
phase according to our needs. Each segment of 
this phase involves running a network simulator, 
providing the agents with realistic scenarios to learn 
from and adapt to different network states.
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Learning agent configurations
Exploring various configurations for RET 
optimization, we’ve tested multiple agents across 
different reinforcement learning (RL) setups, 
examining their effectiveness under various 
conditions: 

A. Observation types

 1. Single Cell Observation (SCO)
  •    Pros: Operates independently without 

requiring data on neighboring cells
  •    Cons: Limited to inputs from the targeted 

cell only, overlooking neighboring cell 
dynamics

 2. Multiple Cell Observation (MCO)
  •    Pros: Enhances decision-making by 

incorporating data from neighboring cells
  •    Cons: Requires identifying relevant 

neighboring cells, achievable with 
neighborhood algorithms

B. RL algorithms

 1. Deep Q Network (DQN)
  •    Pros: Effectively generalizes across unseen 

network states
  •    Cons: May not fully learn the upper end of 

the state range
 2. Proximal Policy Optimization (PPO)
  •    Pros: Achieves faster learning with fewer 

iterations
  •    Cons: Risk of overfitting to simulated 

scenarios
C. Agent setup

 1. Multi-Agent (MA)

  •    Pros: Identifies and adapts to the distinct 
characteristics of each cell, enabling 
customized adaptation

  •    Cons: Requires a dedicated model for each 
cell, increasing complexity

 2. Single Agent (SA)
  •    Pros: Simplifies model management by using 

one model for multiple cells
  •    Cons: Faces challenges in learning individual 

cell peculiarities due to a generalized 
approach

D. Action execution

 1. Multiple Actions (MAct)
  •    Pros: Facilitates understanding of cell 

interdependencies through simultaneous 
adjustments

  •    Cons: May limit exploration of the network 
state space

 2. Single Action (SAct)
  •    Pros: Enables thorough exploration of 

network states with targeted adjustments
  •    Cons: Makes it challenging to grasp the 

interplay between cells

E-Tilt action range for agents
The range of actions available to an agent consists 
of potential e-tilt adjustments it can make. These 
ranges are subsets of the physical e-tilt options 
available for each cell, which vary based on the cell’s 
specific constraints. The most effective method for 
determining an agent’s action range involves using 
delta values relative to the current e-tilt of each cell. 
Our findings indicate that a maximum delta of ±2 
degrees is generally adequate to address nearly all 
cell outages in urban and suburban environments. 

Agent observations in the network
Agents are trained using simulations, acquiring their 
“knowledge” from these simulated environments. 
Once deployed in the actual network, they 
require comparable inputs from the real-world 
network to operate effectively. To this end, the 
observation space is designed to ensure that inputs 
in live networks – derived from cell performance 
measurement (PM) counters – are analogous to 
those in the simulation environment.

Machine Learning in Cell 
Outage Compensation

Machine Learning Based Near-Real-Time  
Cell Outage Compensation



10

Results
To assess the effectiveness of our solution and compare various approaches and configurations, let’s examine 
the results from a specific network scenario, as shown in Figure 6, below. 

In this scenario, the agents are active in the three central cells. These cells are represented without 
hatching. One of these cells experiences an outage, indicated by a red flash. The neighboring cells attempt 
to compensate for this outage, but as the coverage plot reveals, there are coverage gaps along the cell 
boundaries (marked in red) where service cannot be provided because the neighboring cells are already at their 
capacity limits. Yellow areas highlight where traffic is redirected from overloaded cells to those with available 
capacity. The active agents gather data not only from their own cells but also from the neighboring cells, 
which are depicted with white hatching.

Figure 6: Cell Outage Example

Figure 7: COC Example

Machine Learning in Cell 
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Figure 7 reveals how the cell outage was effectively mitigated. The agents, guided by the measurements they 
observed, made tilt adjustments that successfully covered the previously exposed areas, demonstrating the 
system’s ability to adapt and maintain coverage.
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Figure 8 tracks the optimization journey of the RAN cluster depicted in Figures 6 and 7. The x-axis represents 
each step in the process, showing how the agents adjusted e-tilts in response to evolving network conditions. 
When the network state remained constant, the agents retained the existing e-tilts, indicating a stable 
optimization. The right-most graph demonstrates the target Key Performance Indicators (KPIs) achieved with 
each action. Violin plots offer a comprehensive view of the potential KPIs across all network states within  
the cluster:

• The black series shows the KPIs realized by the active agents.
• The brown series indicates the network’s KPIs had there been no e-tilt adjustments.
• The green series highlights the optimal KPIs theoretically attainable at each step.

The KPI presented is a synthesis of fundamental metrics such as RSRP, SINR, THROUGHPUT, and LOAD. The 
action range for e-tilt adjustments was set to {-2, -1, 0, 1, 2} degrees, enabling precise adjustments to the cell's 
orientation to either improve or sustain coverage.

Figure 9 compares the RET optimization performance across various agent configurations, offering a clear 
visual representation of the effectiveness of each setup in enhancing network resilience and service quality.

Figure 8: COC Trajectory

 Figure 9: COC Evaluation Results by optimizing RET

Machine Learning in Cell 
Outage Compensation
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Overall, all agent configurations demonstrated significant improvement in network performance and 
effectively compensated for cell outages (COs). This improvement is particularly notable when compared to 
scenarios where no COC actions were taken. 

However, it’s clear that some configurations outperformed others. Notably, the Multi-Agent (MA) setup 
generally yielded slightly better results than the SA approach. This can be attributed to the MA configuration’s 
ability to consider the specific conditions of neighboring cells (Multiple Cells Observation, or MCO), which 
proved more effective for COC tasks than relying solely on the data from the agent’s own cell (Single Cell 
Observation, or SCO). 

Furthermore, agents that were trained to act simultaneously (Multiple Actions, or MAct) demonstrated 
a better understanding and application of the interdependence of their actions, enhancing their overall 
performance in maintaining network quality. 

To validate our COC solution we successfully demonstrated a closed-loop optimization process back into a 
network simulator, hereby replacing the cellular network on the right side in Figure 3 by another, independent 
network simulation to produce independent training and live data sets. This process further confirms the 
robustness and effectiveness of our approach. 

Deployment and model management
The deployment and ongoing management of models are overseen by a dedicated machine learning  
model management (ref. 2), responsible for organizing the deployment and monitoring the status of each 
model. Upon deployment in the network, an agent model not only begins its optimization tasks but also 
continues its training, using real network data as online input. This continuous learning process allows the 
model to fine-tune its strategies and adjust to local network conditions that were not fully anticipated in the 
simulation phase. 
 
However, if there’s an external change to a cell’s configuration that falls outside the model’s predefined action 
range, the model is considered outdated. When this occurs, the model management is tasked with initiating a 
retraining process for the affected model to align it with the updated network environment. This ensures that 
the models remain effective and relevant, capable of responding to the dynamic nature of network conditions 
and configurations.

Machine Learning Based Near-Real-Time  
Cell Outage Compensation
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Addressing cell outages is key to preserving Quality of Service (QoS) in mobile networks, playing a crucial 
role in ensuring network coverage and enhancing capacity under the dynamic conditions of modern network 
operations. This paper underscores the effectiveness of Amdocs Cell Outage Compensation within the 
O-RAN near-real-time control loop and framework, demonstrating its potential to adapt and respond to the 
challenges presented by today’s complex network environments. 

Our findings affirm that reinforcement learning is a fitting method for compensating cell outages quickly and 
efficiently, allowing the network to adapt seamlessly when a cell becomes unavailable or is restored. 

When considering deployment in actual network clusters, the robustness of the solution is paramount. To this 
end, our training approach encompasses a wide array of network conditions, including variations in tilts and 
other parameters, alongside diverse traffic scenarios, to promote agent generalization. The robustness of 
trained agents is further validated against scenarios not previously seen during their training, ensuring their 
preparedness for real-world deployments. Once deployed, these agents continue to evolve by continuous online 
learning from real network data, enabling them to fine-tune their responses to specific local conditions that 
simulations cannot fully replicate. 

Finally, our approach aligns with various ML deployment and workflow scenarios outlined by the O-RAN 
alliance, demonstrating its versatility and applicability in current and future network architectures.

Conclusion

Machine Learning Based Near-Real-Time  
Cell Outage Compensation
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